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Abstract
Based on a statistical approach we describe the possible formation of a spatially
inhomogeneous distribution in the system of interacting Fermi particles by long-range forces,
and we demonstrate the nonperturbative calculation of the partition function in this case. It is
shown that particles interacting with an attractive 1/r potential form clusters when the pressure
due to the interactions balances the effective repulsion due to the Fermi statistics. A cluster is
the equilibrium structure if we suppose that the average energy of interaction of two particles is
much less than their average kinetic energy. The dynamics of cluster formation is considered in
this approach and the time of relaxation to the equilibrium state is found. It is shown that phase
transition from a spatially inhomogeneous state to a homogeneous state only occurs in a finite
system. The temperature of such a phase transition is determined by the size of the finite system
and the average density.

1. Introduction

The formation of a spatially inhomogeneous distribution of
interacting particles is a typical problem in condensed matter
physics. The types of spatial structures and conditions for
their formation are determined by the type of interaction.
A cluster is one form of spatial inhomogeneity. For a gas
with Coulomb type attraction between particles (a self-acting
system) we cannot calculate the virial coefficients (we cannot
do it for the interaction 1/rn if n � 3 [27]). The statistical
description of such a system developed in [1–5] is based on the
application of quantum field theory [12–17, 23]. In these works
it was shown that gas with interacting particles is equivalent
to two scalar fields corresponding to attraction and repulsion,
respectively, with an exponential self-action. The partition
function can be represented in terms of a functional integral
over these auxiliary fields. The extremal conditions for this
functional are nonlinear equations. The spatial distribution
function which describes the cluster is the soliton solution of
the equations. This approach gives the possibility of finding
the spatial distribution of particles, calculating the cluster size
and determining the temperature of the phase transition in to
the state under consideration by nonperturbative calculation.

Constancy of the chemical potential in space is a
condition for absence of evaporation or swelling of the cluster.

Mechanical equilibrium results from equality of pressures on
the cluster’s borders. Taking into consideration the particles
outside the cluster (i.e. the characteristics of the interacting
gas), we determine the parameters of the cluster and the
equation of state. In previous papers the system of interacting
particles was considered in the limit N → ∞, V → ∞, but
N/V is fixed. However, it is known that real systems have
a finite volume with a finite number of particles in it. This
fact must be taken into account in calculation of the equation
of state, but necessitates a small correction for systems with
short-range interaction between particles [20]. In the case of
systems with long-range interaction (for example gravitation)
the situation must be changed drastically, because the length
of such an interaction is equal to or bigger than the size of the
system. In particular, this must have an effect on the process of
cluster formation.

In the papers [6, 7] this approach was applied to the
investigation of a system with long-range interacting Bose
particles. It has been shown that the spatial distribution of
such a system is inhomogeneous and is like a finite-size cluster.
The radius of the cluster and the conditions and dynamics of
its formation have been found both for nondegenerate states
and for the Bose–Einstein condensation regime. In this article,
based on a statistical approach [1–4], we demonstrate the
nonperturbative calculation of the partition function, we solve
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the system of Fermi particles interacting with an attractive
1/r potential, that is we obtain free energy for such a
system and consider phase transition between a spatially
homogeneous state and a spatially inhomogeneous state. We
obtain the expression for the equilibrium radius of a cluster
and the conditions for formation of a spatially inhomogeneous
distribution in such a Fermi system for all temperatures.
However, we can find exact results in the Boltzmann limit
with first quantum corrections. For all temperatures we
propose an approach which gives the possibility of finding the
approximate radius of a cluster or of evaluating it.

2. Statistical approach to the system of interacting
particles

Let us consider a system of interacting particles in conditions
such that the thermal wavelength of a particle can be larger
than the average interparticle distance: on the one hand it
is necessary to take into account statistical factors, but, on
the other hand, this length is far smaller than the average
scattering length, allowing us to describe the interaction
classically, disregarding dynamical quantum correlations. The
Hamiltonian of such a system [1, 3, 17, 18] is

H (n) =
∑

s

εsns − 1
2

∑

ss ′
Wss ′ nsns ′ + 1

2

∑

ss ′
Uss ′ nsns ′ , (1)

where εs is the additive part of the particle energy in the
state s (for example kinetic energy or energy in an external
field) and Wss ′ and Uss ′ are the absolute values of the
attraction and repulsion energies of particles in the states s
and s ′, respectively. The macroscopic state of the system is
determined by the occupation numbers ns . The subscript s
corresponds to variables that describe an individual particle
state.

In [1–4] in order to investigate the thermodynamic
properties of the system of interacting particles a Hubbard–
Stratonovich [8–11] representation was used for the partition
function in the terms of a grand partition function:

Zn = 1

2π i

∮
dξ
∫

Dϕ
∫

Dψ exp (−S (ξ, ϕ,ψ)) , (2)

where S is the functional which we call an effective free energy,
analogous to an action in field theory:

S (ξ, ϕ,ψ) = 1

2β

∑

s,ś

(
W−1

s,s ′ϕsϕs ′ + U−1
s,s ′ψsψs ′

)

+ δ
∑

s

ln (1 − δξ exp (−βεs + ϕs) cosψs)

+ (N + 1) ln ξ, (3)

ξ ≡ eβμ is activity, μ is chemical potential, β = 1/kT is
reverse temperature, s and s ′ run all the states of the system,
ε is kinetic energy, N is the number of particles, δ = +1 for
Bose particles and −1 for Fermi particles. The two auxiliary
fields ϕ and ψ are introduced corresponding to attraction and
repulsion. The partition function (2) is written as a functional
integral over these fields. W−1

s,s ′ ,U−1
s,s ′ are inverse operators of

the interaction: ω−1
ss ′ = δss ′ L̂s ′ where L̂s ′ is such an operator

for which the interaction potential is a Green function.
The integral (2) is calculated by the ‘saddle-point’

method [19, 20] across the point determined by the functional
derivatives δS

δϕ
= δS

δψ
= 0 as

1

β

∑

s ′
W−1

ss ′ ϕs ′ − ξseϕs cosψs

1 − δξseϕs cosψs
= 0 (4)

1

β

∑

s ′
U−1

ss ′ ψs ′ + ξseϕs sinψs

1 − δξseϕs cosψs
= 0 (5)

and the derivative

∂S

∂ξ
= 0 ⇒

∑

s

ξseϕs cosψs

1 − δξseϕs cosψs
= N + 1, (6)

where ξs = ξeβεs . This set of equations (4)–(6) provides a
solution to the many-particle problem in the sense that it selects
the system states whose contributions to the partition function
are dominant. The third equation is a normalization condition
for the particle distribution function which is determined by
the auxiliary fields. It is obvious that, for given statistics,
the distribution function depends on the nature and intensity
of the interaction. Cluster formation corresponds to particle
localization within a limited space. In our treatment, the effect
is reflected in the behavior of the auxiliary fields and chemical
potential.

For a screened Coulomb or Newtonian potential, the
inverse operator may be written as

L̂ = − 1

4πq2
(� − λ2), (7)

where q2 is the interaction constant, � is Laplace’s operator
and λ−1 is the screening length [8, 15–17]. The number
of realistic interactions for which the inverse operator can
be found and the general solution of the set (4)–(6) can be
obtained is limited. That is why we will confine ourselves to
long-range attractive and repulsive Coulomb potentials (∝ 1

R )
for a Fermi gas where we will find the conditions for the cluster
formation and cluster parameters.

In the continuum approximation, the subscript s runs
through a continuum of values in the system of volume V .
When integrating over impulses and coordinates, we bear in
mind that the unit cell volume in the space of individual states
is equal to ω = (2π h̄)3. In order to avoid unnecessary
complications we shall only consider particles without spin.

3. Cluster formation in the system of interacting
particles

3.1. The equations for the spatial distribution function for a
system with Coulomb attraction

Now we shall consider the system of particles interacting
by long-range attraction only and we shall demonstrate a
nonperturbative calculation of the partition function. For
Coulomb attraction the inverse operator is known to be

2
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W−1
rr ′ = −1

4πq2 �rδrr ′ , where g is the interaction constant and
�r is the Laplace operator.

Let us consider the system in the usual thermodynamic
limit: number of particles N → ∞ and volume V → ∞
with fixed N/V . We consider the effective free energy (3)
in spherical coordinates: ∇ ≡ ∂

∂R and, neglecting the surface
contribution, we can write the effective free energy (3) for a
Fermi gas as

S = 1

2β

∫ V

0

(∇ϕ)2
4πq2

dV − 1

ω

∫ V

0
dV

×
∫

d3 p ln

[
1 + ξeϕ exp

(
−β p2

2m

)]
+ N ln ξ

=
∫ V

0
dV

[
(∇ϕ)2

4rq
− 1

λ3
f5/2 (ξeϕ)

]
+ N ln ξ, (8)

where rq = 2πq2β , m is a particle mass, λ =
√

βh̄2

2πm
is the thermal wavelength of a particle and f5/2(ξ) =

4√
π

∫∞
0 dxx2 ln(1 + ξe−x2

) = ∑∞
l=1(−1)l+1 ξ l

l5/2 is a special
Fermi function [19, 20]. The sense of the auxiliary field ϕ is
next—a spatial distribution function can be expressed with ϕ
as

ρ(R) =
∫ ∞

0

d3 p

(2π h̄)3

ξ exp
(
− p2

2mkT

)
eϕ(R)

1 + ξ exp
(
− p2

2mkT

)
eϕ(R)

, (9)

where we used the underintegral expression in equation (6).
Let us introduce the dimensionless quantity r = R/rq instead
of R. Then, the effective free energy (8) (in spherical
coordinates) can be written as

S = 4π
∫ V

0
r 2 dr

[
(∇ϕ)2

4
− r 3

q

λ3
f5/2 (ξeϕ)

]
+ N ln ξ. (10)

The saddle-point equation is a Lagrange equation for this
functional:

∂2ϕ

∂r 2
+ 2

r

∂ϕ

∂r
+ 2r 3

q

λ3

∂ f5/2 (ξeϕ)

∂ϕ
= 0. (11)

This equation selects the system’s states (which are described
by the field configuration ϕ(R) or spatial distribution function
ρ[ϕ(R)]) whose contributions to the partition function are
dominant. Unfortunately, this equation does not have an
analytical solution. But the problem simplifies in the
Boltzmann limit.

3.2. The solution in the Boltzmann limit and the dynamics of
cluster formation

Let us consider the limiting case ξ → 0 corresponding to high
temperature and small concentration, using decomposition of
the special function f5/2(ξeϕ) in a row on orders of the activity
ξ . Then the effective free energy (8) is reduced to the simpler
expression

S = 4π
∫ V

0

[
1

4
(∇ϕ)2 − ξ

r 3
q

λ3
eϕ
]

r 2 dr + N ln ξ. (12)

Figure 1. The spatial distribution function σ(r)2 in a cluster at
different temperatures (schematically). The solid line corresponds to
a lower temperature T1, the dashed line corresponds to a higher
temperature T2. The dotted line σ 2 = 1 corresponds to the mean
fixed density of the system and determines the equilibrium radii of
clusters d01 and d02 under the above-mentioned thermodynamic
conditions.

That is, the system with Coulomb attraction is equivalent to
a single scalar field ϕ(r) with an exponential self-action. An
analogous expression was obtained in [23]; however, the term
N ln ξ , which fixes the number of particles, is absent there. The
saddle-point equation for the functional (12) is

∂2ϕ

∂r 2
+ ξ

2r 3
q

λ3
eϕ = 0. (13)

As will be shown below, the term 2
r
∂ϕ

∂r can be omitted. In order
to connect the auxiliary field ϕ with the density ρ(R) we have
to use equation (9) and to pass to the Boltzmann limit ξ → 0:

ρ = ξ

λ3
eϕ ≡ ξ

λ3
σ 2, (14)

where we introduce the new variable σ = exp(ϕ/2) and mark
in α2 ≡ r 3

q/λ
3. Then we can rewrite equation (13) for the field

ϕ as an equation for the density as

∂2σ

∂r 2
− 1

σ

(
∂σ

∂r

)2

+ ξα2σ 3 = 0. (15)

This equation has a soliton solution [3]

σ = �√
ξα

1

cosh�r
, (16)

where � is an integration constant. Any soliton solution
corresponds to a spatially inhomogeneous distribution of
particles—a finite-size cluster. The corresponding asymptotics
are σ 2 = 1 for r = d , where d is the cluster size, and σ → 0
as r → ∞. This solution describes the presence of particles
in the inhomogeneous formation of size d and the absence
of particles at infinity (figure 1). This spatial distribution is
compressing to the line σ = 1 or ϕ = 0 when T → ∞,
N
V → 0, which is why the field ϕ = 0 corresponds to a spatially
homogeneous distribution in the system.

3
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Let us substitute solution (16) into the effective free
energy (12):

S = 4π
∫ d

0

(
�2 − 2ξα2σ 2

)
r 2 dr + N ln ξ. (17)

Then we will integrate using the decomposition 1/ cosh x ≈
1 − x2/2 in power series of x ≡ �d � 1:

S = −V
�2

α2λ3
+ N ln ξ. (18)

The integration constant �2 is found from the asymptotics
σ 2(d) = 1: �2 ≈ ξα2 + ξ 2d2α4. Thus, we have the result:

S = − V

λ3
ξ + N ln ξ − V

λ3
ξ 2d2α2. (19)

Assuming that the average energy of interaction of two
particles is less than the average kinetic energy ∼kT of a

particle
r3

q N

V � 1, we can find the activity ξ from the equation
∂S
∂ξ

= 0 as

ξ ≈ λ3 N

V
− 2d2α2λ6 N2

V 2
≡ ξ0 + ξq, |ξq| � ξ0, (20)

where ξ0 and ξq are activities of an ideal gas and the first
correction for the interaction, respectively. Then integrating
equation (2) with the effective free energy (19) on the saddle-
point (20) we obtain the partition function as

ZN = Z 0
N × exp

[
V

λ3
ξq − N ln

(
1 + ξq

ξ0

)
+ V

λ3
ξ 2d2α2

]
,

(21)
where Z 0

N is the partition function for an ideal gas. Knowing
this, we can find a decomposition of free energy on the cluster
radius d which plays a part in the correlation length

F = F0 − kT

[
V

λ3
ξq − N ln

(
1 + ξq

ξ0

)
+ V

λ3
ξ 2d2α2

]

= F0 + kT

[
−α

2λ3 N2

V
d2 + α4λ6 N3

V 2
d4

]
, (22)

where F0 is the free energy for an ideal gas. We can see that the
d2 term is always negative − α2λ3 N 2

V < 0, i.e. the cluster exists
in a system with Coulomb attraction at any thermodynamic
conditions. Minimizing (22) by the size of the cluster

∂F

∂d
= −kT

dα2λ32N2

V

[
1 − 4

d2α2λ3 N

V

]
= 0, (23)

we obtain the optimum radius of the cluster,

d2
0 = V

4Nr 3
q

(24)

or, for the dimension value D = d · rq,

D2
0 = 1

4

kT

2πq2

V

N
. (25)

This expression means that the equilibrium size of the
cluster is defined by the balance of the two forces. The first

is the attraction Coulomb energy, which tries to compress the
gas. It is represented by the multiplier q2 (in the sense of
an interaction constant). The decrease in cluster size with an
increase in the average density in the system N/V is connected
with a closer packing of the particles in the cluster on account
of the increase in the energy of interaction. The second force is
the thermal energy, which creates a positive pressure resisting
compression. It is represented by the multiplier kT . With
increasing temperature the size of the cluster d is increasing;
however, the central density is decreasing. When T → ∞ the
radius of the cluster d → ∞ and the central density σ(0) → 1.
Such behavior of the value d tells us that d plays the part of
correlation length, which at the point of phase transition (in our
case T → ∞) in infinitely large. Such a situation is realized
due to the long-range type (∼1/r ) of Coulomb interaction.

On other hand equation (25) may be understood as such
characteristic distance in the system at which the essential
deflection from the average fixed density N/V is observed. If
we assume that q2 = Gm2, where m is particle mass and G is
the gravitational constant, this expression may be understood
as Jeans’ length [22].

Let us consider the dynamics of cluster formation. For this
we will use the equation of motion as

∂d

∂ t
= −χ ∂F

∂d
, (26)

where χ is some constant. Applying (22) and (24) we have:

ḋ + ηd3 − ηd2
0 d = 0, (27)

where we use η ≡ χNkT
2d4

0
. The solution of equation (27) is

d2 = d2
0

1 + C exp
(−2ηd2

0 t
) , (28)

where C is an integration constant. Let us consider the next
initial states:

• Let the radius of spatial inhomogeneity be larger than
the equilibrium size d(t) > d0 at some moment of time
t > 0. Then the constant −1 < C < 0, which means
that the cluster increases from a spatially homogeneous
distribution (where d → ∞) to the equilibrium size d0.

• Let the radius of a spatial inhomogeneity be smaller than
the equilibrium size d(t) < d0. Then the constant C >

0, which means that the cluster will evaporate from an
initial distribution with central density which is larger then
equilibrium density at the given temperature.

We can see that size of the cluster approaches the equilibrium
size (24) asymptotically d = d0[1 + C exp(−2ηd2

0 t)]
when deflections are small. The term 1/2ηd2

0 can be
understood as the relaxation time. If some fluctuation of
density has appeared in the system, then it brings about the
appearance of a potential gradient. In turn, this brings about
spatial inhomogeneity—a cluster with size approaching the
equilibrium value asymptotically. In other words, a cluster is
the equilibrium structure if we are assuming that the average
energy of interaction of two particles is less than the average

4
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kinetic energy ∼kT of a particle
r3

q N

V � 1, when the term
2
r
∂ϕ

∂r in equation (13) can be omitted, as it will be in the next
subsection.

Since the number of particles in the system N → ∞, but
the number of the particles in the cluster is finite, this means
that our system disintegrates to an infinite multitude of clusters
of size D0 each. After that the process of cluster formation
is repeated, where the early formed clusters play the part of
particles. In others words, the free energy of such a system has
no absolute minimum and each state of the system is analogous
to a false vacuum in field theory [12].

3.2.1. Single-particle motion. Let us consider single-particle
motion in order to ground our assumptions in the previous
section for the calculation of cluster size. For the evaluation
of cluster size we can make use of another method without
calculating the free energy. Let us assume that the average
energy of Coulomb interaction of two particles is less than the

average kinetic energy ∼kT of a particle, when
r3

q N

V � 1 this
has been called ‘local ideality approach’ [24]. This must lead
to the two consequences:

• the activity must be

ξ = ξ0

(
1 + O

[
r 3

q

V/N

])
, (29)

where ξ0 = λ3 N
V is the activity for an ideal gas. That is the

system’s activity differs little from the activity for an ideal
gas.

• The center density (figure 1) differs little from the average
density: ρ(0) � m N/V . Then we can think that
�2 � N

V r 3
q and we can evaluate the term 2

r
∂ϕ

∂r or 2
r
∂σ
∂r in

equations (13), (15) with the help of solution (16):

max
∣∣ 2

r
∂σ
∂r

∣∣
∂2σ
∂r2 − 1

σ
∂σ
∂r + ξ

r3
q

λ3 σ 3
∼ r 3

q N

V
� 1.

That is, this term can be omitted in the local ideality
approach.

After that let us calculate the potential energy of a particle
U(r) in the cluster using the Boltzmann distribution

σ(r) = σ(0) exp

[
−U(r)

kT

]
. (30)

Then, using (16), we have that

U(r) = −kT ln

[
σ(r)

σ (0)

]
= 2kT ln [cosh (�r)] . (31)

The field U(r) is the self-consistent field of the rest particles
in the system (in the cluster). Using the assumption (29)
about interaction and thermal energies and considering small
distances from the center of the cluster as r/rq � 1, we can
write that

U(r) ≈ kT�2r 2 ≈ kT Nr 3
q

V
r 2. (32)

Figure 2. The potential energy U(r) of a particle in the cluster
(schematically). The solid line corresponds to a lower temperature
T1, the dashed line corresponds to a higher temperature T2. The
particle has finite motion in the potential well created by all the
particles in the system. Then we determine the radius of the cluster d
as the distance from the center of the cluster to the point at which a
particle with average kinetic energy 1

2 kT stops.

We can see that a particle in the cluster is in a potential well
created by all the cluster’s particles. Then the cluster radius d
can be understood as a distance from the center of the cluster
that

U(d) = 1
2 kT, (33)

where the multiplier 1/2 corresponds to radial degree of
freedom. This means that d is the distance from the center of
the cluster to the point at which a particle with average kinetic
energy 1

2 kT will stop (figure 2). That is, we can calculate the
radius of the cluster in a self-consistent manner.

Then solving the equation (33) we has the equilibrium
radius of the cluster as d2 = V

2r3
q N , which exactly coincides

with equation (24) by a constant multiplier. Since two
particles are attracted by a low 1/r , by Newton mechanics
they cannot fall on each other. Hence the spatial distribution is
regular everywhere in the limits of the local ideality approach;
however, this is not so in the total case [25]. We call such a
mechanism of cluster formation the thermal mechanism. It is
necessary to notice that single-particle motion in a cluster is
superdiffusive [26].

3.3. The cluster size at all temperatures

In order to calculate the radius of a cluster at any temperature
we must solve equation (11) and obtain a spatial distribution
function of type (16). We cannot do this because of
mathematical difficulties; however, if we suppose that the gas

is ideal locally, that is
r3

q N

V � 1, and consider small distances
from the center of the coordinates R/rq � 1, where |ϕ| � 1
(see equations (14) and (16)), then our problem simplifies.

For example, let us consider equation (13) and decompose
eϕ in a row:

∂2ϕ

∂r 2
+ ξ0

2r 3
q

λ3
+ O(ϕ) = 0, (34)

5
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where we suppose that ξ ≈ ξ0. Its solution and the
corresponding density is

ϕ ≈ −ξ0

2r 3
q

λ3
r 2 ⇒ ρ = ξ

λ3
exp

(
−ξ0r 3

q

λ3
r 2

)
. (35)

Then we can obtain the potential energy of a particle in the
cluster as

U(r) = −kT ln

[
exp

(
−ξ0r 3

q

λ3
r 2

)]
= kT

ξ0r 3
q

λ3
r 2, (36)

which was obtained earlier (32). Then, using the condition
U(d) = 1

2 kT and an expression for the Boltzmann activity

ξ0 = λ3 N
V we obtain the result

kT
ξ0r 3

q

λ3
d2 = 1

2
kT ⇒ d2 = V

2r 3
q N

, (37)

which coincides with equation (24).
Now let us calculate the radius of the cluster for any

temperature using equation (11) and decomposing one in a row
as

∂2ϕ

∂r 2
+ 2r 3

q

λ3

(
∂ f5/2 (ξ0eϕ)

∂ϕ

)

ϕ=0

+ O(ϕ) = 0. (38)

Analogously, the scale of the spatial inhomogeneity is
determined by the term at zero degrees of the field ϕ. However,
the calculation with a spatial distribution function (9) is
somewhat problematical because the underintegral expression
cannot be integrated in an elementary function. That is why
we have to find another method. If we suppose that the gas is
ideal locally, then we have to suppose that the motion of the
particles is quasiclassical [21]. Than we propose to use the
particle’s energy in the Boltzmann view

U(r) = −kT ln

[
ρ(r)

ρ(0)

]
= −kT ln eϕ(r) = −kTϕ(r), (39)

where the distribution (14) has been used and the field ϕ is the
solution of equation (38); however we determine the radius of
the cluster d as

U(d) = 1
2 kT + 3

5εF, (40)

where εF is the Fermi energy which is determined by the fixed
average density of the system (A.7). The term 1

2 kT is the
kinetic energy of a particle caused by thermal motion and 3

5εF

is the average particle kinetic energy in a degenerate Fermi gas
(because by the Pauli exclusion principle all particles cannot
be in the level ε = 0). The term 3

5εF can be understood as the
repulsive ‘statistical potential’ [19] too. Then the assumption
about local ideality of gas is written as q2

3√V/N
� kT + εF—the

average energy of interaction of two particles is less than the
average kinetic energy of a particle.

Using the decomposition (38) and equations (40)
and (A.3) for determination of the activity ξ0 we can obtain
an expression for the radius of the cluster for a Coulomb
interacting Fermi gas:

⎡

⎣
kT

2r3
q

λ3

(
∂ f5/2(ξ0eϕ)

∂ϕ

)

ϕ=0
d2 = 1

2 kT + 3
5εF

λ3 N
V = f3/2(ξ0)

⎤

⎦ . (41)

Let us consider some limiting cases. In the limit of high
temperature we supposed that kT � εF. Then calculating the
first quantum correction only in the decomposition (A.3) we
can obtain that

d2 = V

2r 3
q N

+ 1

25/2

λ3

r 3
q

, (42)

where λ/rq � 1. For the dimension value:

D2 = kT V

4πq2 N
+ 1

27/2

h̄3

π(2πm)3/2(kT )3/2
. (43)

The sense of the first addendum has been explained in
section 3.2. The sense of the first quantum correction is
explained below.

It is know that a so-called ‘statistical potential’ of particle
interaction exists in quantum gases [19]. It is repulsion for
fermions and attraction for bosons. This phenomenon is
connected with the symmetry of the particle wavefunction.
Hence the equilibrium size is determined by three energies—
Coulomb interaction (the interaction constant is rq or q2),
thermal kT and the above-mentioned ‘statistical potential’ (λ
or h̄ plays the part of an interaction constant). That is, in case of
Fermi statistics, the quantum energy resists compression under
the action of a Coulomb force as the small addition to thermal
energy for high temperatures. This explains the sign ‘+’ for
the small correction to the cluster radius. For the case of Bose
statistics we can use an analogous expression with the sign ‘+’
replaced by the sign ‘−’ [28].

In the limit of low temperatures kT � εF we obtain that

D2 = 0.4
h̄2

q2m

(
V

N

)1/3 [
1 + 5

6

kT

εF

]
. (44)

We can see that the equilibrium size is determined by two
energies—the Coulomb potential and the repulsion statistical
potential (the constant of interaction is h̄). That is, the
aforesaid quantum energy resists the Coulomb compression.
The small correction kT

εF
means that the above-mentioned

thermal mechanism of cluster formation (as a small addition
to Fermi statistical repulsion) is valid even if T �= 0.

An expression for the radius of a cluster at low
temperatures can be obtained in the following way. It is
not difficult to see that the equilibrium radius of a cluster is
determined by the multiplier 2rm

λ3 in the equation (13) after the
term eϕ at ξ ≈ ξ0. In the case that T → 0 we can suppose that
the radius is determined by the above-mentioned multiplier;
however, because temperature is zero, kT cannot enter into the
formula. Then it is necessary to multiply this coefficient by
the value kT

εF
which cancels the temperature. Then the cluster

radius is determined as 1
D2 ∝ rq

λ3 (
kT
εF
) = h̄2

q2m (
V
N )

1/3, and we
have the formula (44).

3.4. The condition for cluster formation and phase transition
to the spatially inhomogeneous state

Since equation (11) has a soliton solution under any
thermodynamic conditions, that cluster is formatted forever,

6
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i.e. for any temperature and concentration. However, we
have considered a system in the limit N → ∞, V → ∞
and fixed N/V . It is known that real systems have a finite
volume and number of particles, where N and V are fixed.
This requires small corrections in the equation of state for a
system with short-range interaction between particles [20]. In
the case of systems with long-range attraction the situation
must be changed because the length of such an interaction is
greater than the size of the system. Hence we can suppose
that phase transition from an inhomogeneous state to a spatially
homogeneous state can occur.

Let us write the condition of normalization for the spatial
distribution (16) as
∫ V

0
ρ(r) d3r = N

r 3
q

or
∫ V

0
σ 2 d3r = V

r 3
q

. (45)

This equation may be regarded as the condition put on
the solution of equation (13). We mast find the field
σ which minimizes the effective free energy (12) at the
condition (45). Hence we must use the method of an indefinite
Lagrange multiplier. The Lagrange multiplier can be found by
solving a system of three equations: two determined by the
asymptotics of solution (16) and the third from the condition
of normalization (45). However, we can find an even simpler
way.

Let us compare two effective free energies on the saddle-
point ξ̃ = λ3 N

V . The first corresponds to a gas with a spatially
inhomogeneous distribution which we can call the ‘condensed’
phase:

Sd = 4π
∫ V

0

(
�2 − 2ξα2σ 2

)
r 2 dr + N ln ξ

= �2 V

r 3
q

− 2ξα2 V

r 3
q

+ N ln ξ. (46)

The second corresponds to a spatially homogeneous distribu-
tion with ϕ ≡ 0, which we can the ‘gaseous’ phase:

S∞ = − V

λ3
ξ + N ln ξ. (47)

In the case of inhomogeneous distribution the corresponding
effective free energy must be less than that for homogeneous
distribution on the saddle-point:

Sd(̃ξ ) � S∞ (̃ξ )
⇓
�2 V

r 3
q

− 2̃ξα2 V

r 3
q

+ N ln ξ̃ � − V

λ3
ξ̃ + N ln ξ̃ , (48)

where the equality is reached in the point of phase transition to
the ‘condensed’ phase. The inequality (48) can be reduced to:

r 3
q N

V�2
� 1. (49)

Let us integrate equation (16) over all space using the
normalization (45). Using the equality

∫∞
0

x2 dx
cosh2 ax

= π2

12a3 we

find that � = π3

3N . Then for temperatures or concentrations
when the inequality

r 3
q N3

V
� π6

9
(50)

is executed, the interacting gas is in a spatially inhomogeneous
state. We can see that termination of the volume and number
of particles means that if thermodynamic conditions do not
execute the inequality (50) then a cluster cannot form. On the
contrary, in the limit N → ∞ and V → ∞ the transition
to a spatially inhomogeneous state always happens, because
this condition is always satisfied in this case. In other words,
phase transition to a spatially inhomogeneous state from a
homogeneous state can occur in the finite system only, and the
critical temperature is

kTc = 2 3
√

9

π
q2 N

3
√

V
, (51)

where we have used that rq = 2πq2

kT .
Let us calculate the heat which escapes at the transition:

Q = T ��, where �� is difference between the entropies of
these two states. We can find the internal energies of the states
with the help of the formula (A.11), U = − ∂S

∂(1/kT ) . Then we
have:

Ud = π6

3N2

V

r 3
q

kT (52)

U∞ = 3

2

ξV

λ3
kT ≈ 3

2
NkT . (53)

We can see that at such a transition the internal energy suffers
a jump. The free energies of these states are determined by
the effective free energies (46) and (47) on the saddle-point
ξ ≈ λ2 N

V :

Fd = kT

(
π6

9N2

V

r 3
q

− 2N + N ln ξ

)

= kT

(
π6

9N2

V

r 3
q

− N

)
+ F∞ (54)

F∞ = kT

(
− V

λ3
ξ + N ln ξ

)
≈ kT (−N + N ln ξ) . (55)

Knowing the internal and free energies we can find the
entropies as

�d = Ud − Fd

T
= k

2π6

9N2

V

r 3
q

+ k N − F∞
T

(56)

�∞ = U∞ − F∞
T

≈ 3

2
Nk − F∞

T
. (57)

Then the heat which escapes at the transition from a spatially
homogeneous state to a spatially inhomogeneous state is

Q = T (�d −�∞) = 1

2
NkT

(
4π6

9N3

V

r 3
q

− 1

)
= 3

2
NkT,

(58)
where we have used the equality (50). We can see that the
escaping heat is equal to the kinetic energy of the system
in our approximation ξ ≈ ξ0. This can be interpreted as
collapse of the system, when all particles stop and the system
compresses to a point. It is necessary to notice that these
phases are distinguished by single-particle motion: namely,

7
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superdiffusive in the ‘condensed’ phase and ballistic in the
‘gaseous’ phase [26].

This phenomenon can be explained using simple but clear
considerations. Let gas creates the field �φ = 4πqn, where
n � N/V and V ∼ R3

max. If we suppose that the field φ = 0
is on the border of the system, then the energy of a particle in
the center (the depth of the potential well) is

U0 = qφ ∼ −q2n R2
max. (59)

The thermal energy of a particle is ∼kT . If the thermal
energy of a particle is less than its maximum energy of
interaction (in the center of the system), then the gas has a
negative pressure and tries to compress to a point. On the
contrary, if the thermal energy of a particle is more than
its maximum interaction energy (by module), then gas has a
positive pressure and tries to widen to infinity. When gas
is compressing, its thermal energy is enlarging, since the
total energy of the system is constant. This establishes the
equilibrium spatial distribution (16).

The condition of cluster formation is determined by
correlation between above-mentioned energies:

q2n R2
max ∼ kT ⇒ q2 N

kT Rmax
∼ 1. (60)

If N → ∞ and V → ∞, then U0 → ∞—this means that
thermal energy is always less than the energy of interaction
in the center of the system (any point can be chosen as the
center of the system in this case), hence clusters exist at any
temperature in such a gas.

The same reasoning can be applied to a degenerate Fermi
gas, where Fermi energy εF supplies part of particle’s kinetic
energy. We can write that

q2n R2
max ∼ εF ⇒ q2m N1/3 Rmax

h̄2
∼ 1. (61)

Hence the phase transition to the spatially inhomogeneous state
occurs in a degenerate Fermi gas with attracting Coulomb
interaction. We can obtain the same equations from Jeans
criterion D ∼ Rmax with help equations (25) and (44).

We can see that the phase transition from a spatially
homogeneous state to a spatially inhomogeneous state in
systems with long-range interacting particles occurs in finite
systems only. In an infinite system (when number of particles
N → ∞ and volume V → ∞ with fixed N/V ) clusters exist
at any temperature and the phase transition does not occur.

4. Conclusion

Based on a statistical approach [3, 4, 1, 2], we have
demonstrated a nonperturbative calculation of the partition
function and solved the system of particles with Boltzmann
and Fermi statistics with long-range attraction of the Coulomb
type. That is, we obtained the free energy for such a
system and considered phase transition between a spatially
homogeneous state and a spatially inhomogeneous state. We
obtained the expression for the equilibrium radius of a cluster

and the conditions of formation of a spatially inhomogeneous
distribution in the system for all temperatures. However, we
can find exact results in the Boltzmann limit with first quantum
corrections. For all temperatures we proposed an approach
which gives the possibility of finding the approximate radius
of the cluster, or to evaluate one. All results were obtained
for the condition that the average energy of interaction of two
particles is much less than their average kinetic energy kT or
Fermi energy εF: q2

3√V/N
� kT or q2

3√V/N
� εF—the ‘local

ideality’ approach [24].
The long-range attraction of particles results in the

formation of a cluster of finite size, as the initial homogeneous
state is unstable in the limit N → ∞, V → ∞ with fixed
N/V . The equation for the spatial distribution function has be
obtained. However, it is simplified in the following limiting
cases only.

In the case of large temperature (when λ � 3
√
υ) the

radius of a cluster is determined by the balance of two
energies: the energy of attractive interaction which tries to
compress the gas, and the thermal energy which creates a
positive pressure. This mechanism created an equilibrium
distribution in the system (16), in particular, with increasing
temperature the size of the cluster increases and its central
density decreases. In the case of a degenerate system the
radius of the cluster is also determined by the balance of two
energies: the energy of interaction which tries to compress
the gas, and the repulsive Fermi statistical potential creating
a positive pressure. Overall the equilibrium cluster size is
determined by three energies: the energy of interaction and
the thermal and repulsive ‘statistical potential’. The size
of the cluster approaches the equilibrium size asymptotically
during its formation. The state of the system with a spatially
inhomogeneous distribution corresponding to a cluster of the
equilibrium size (43) or (44) is stable if we assume that the
‘local ideality’ approach is true.

It is interesting to note that if we are assuming the constant
interaction is q2 = Gm2, where m is the particle mass and
G the gravitational constant, than the cluster radii (43), (44)
are Jeans lengths in a self-gravitational system. However,
if we are assuming the constant interaction is the electrical
constant q2 = (Ze)2, then the above-mentioned cluster radii
are Debye–Hueckel and Thomas–Fermi radii of screening in a
plasma.

The situation changes in the case of large but finite size
of the system and number of particles in it. The temperature
and average concentration in the system need to satisfy
the inequality (50) in the Boltzmann limit and (61) in the
degenerate case for existence of the cluster. For decreasing
temperature, when it reaches the value which satisfies the
aforesaid inequalities (50), (61), phase transition to a spatially
inhomogeneous distribution occurs. The radius of a cluster
plays the part of correlation length for such a phase transition.
The internal energy suffers a jump and heat escapes at the
point of transition. Such behavior of the system with long-
range interacting particles occurs because the length of the
interaction is comparable with the size of the system. In other
words, the phase transition from the spatially homogeneous
state to the spatially inhomogeneous state in the system with

8



J. Phys.: Condens. Matter 20 (2008) 045222 K V Grigorishin and B I Lev

long-range interacting particles occurs in a finite system only.
In an infinite system (when the number of particles N → ∞
and volume V → ∞ with fixed N/V ) clusters exist at any
temperature and phase transition does not occur.

Appendix. The effective free energies for ideal
quantum gases

Let us obtain some expressions used in this paper for ideal
Fermi and Bose gases. Thus we shall demonstrate the
correctness and greater rationality of our approach as compared
with the traditional method [19].

In the case of an ideal gas ϕ = ψ = 0. Then the effective
free energy (3) for the system is

S = − 1

ω

∫
dV

∫
4πp2 dp ln

(
1 + ξ exp

(−βεp
))+ N ln ξ

= − V

λ3
f5/2 (ξ)+ N ln ξ, (A.1)

where

f5/2 (ξ) = 4√
π

∫ ∞

0
dxx2 ln

(
1 + ξe−x2

)

=
∞∑

l=1

(−1)l+1 ξ
l

l5/2
(A.2)

is the special Fermi function [19, 20]; εp = p2/2m is the

kinetic energy of a particle; and λ =
√

βh̄2

2πm is the thermal
wavelength of a particle. Then the equation for the saddle-
point is as follows:

1

v
= 1

λ3
f3/2 (ξ) , (A.3)

where f3/2(ξ) = ξ
∂ f5/2(ξ)

∂ξ
, v ≡ V

N .
The partition function (2) for this case:

ZN = exp

[
V

λ3
f5/2 (ξ)− N ln ξ

]
, (A.4)

where ξ is determined from equation (A.3). We can find any
thermodynamic functions knowing the partition function. Let
us consider the case ξ → 0 corresponding to high temperature
(the Boltzmann limit), then equations (A.3), (A.4) are reduced
to

ZN = exp

[
V

λ3
ξ − N ln ξ

]
≈ V N

N !
(

mkT

2π h̄2

) 3
2 N

(A.5)

1

v
= ξ

λ3
. (A.6)

Let us consider the case T → 0 corresponding to a
degenerate Fermi gas. Then the special Fermi functions
are [19]

f3/2 = 4

3
√
π

[
(ln ξ)3/2 + π2

8
(ln ξ)−1/2

]
+ O(ξ−1)

f5/2 = 4

3
√
π

[
2

5
(ln ξ)5/2 + π2

4
(ln ξ)1/2

]
+ O(ξ−1).

(A.7)

In this case, the expression (A.3) is reduced to

λ3

υ
≈ 4

3
√
π
(ln ξ)3/2 ⇒ ξ ≈ eβεF , (A.8)

where

εF ≡ h̄2

2m

(
6π2

υ

) 2
3

(A.9)

is the Fermi energy.
We can find analogous expressions for a Bose gas. It is

necessary to proceed from the effective free energy as

S = 1

ω

∫
dV

∫
4πp2 dp ln

(
1 − ξ exp

(−βεp
))+ N ln ξ

= − V

λ3
g5/2 (ξ)+ ln (1 − ξ)+ N ln ξ, (A.10)

where g5/2(ξ) = − 4√
π

∫∞
0 dxx2 ln(1 − ξe−x2

) = ∑∞
l=1

ξ l

l5/2

is a special Bose function [19, 20]. It is clear that activity is
always ξ < 1 unlike a Fermi system; ln(1 − ξ) is the effective
free energy for a condensed phase (the addendum with p = 0
is as important as the rest of the sum when ξ → 1).

Let us find the internal energy U of the system proceeding
from the arranged analogy between thermodynamic theory in
our representation and field theory. In order to do this we
will use the correlation −H = ∂Smech/∂ t and determine
conformities H ←→ U, Smech ←→ Sterm, t ←→ 1/kT ,
where H is Hamilton’s function of the system, Smech and Sterm

are the action for mechanics and effective free energy for
thermodynamics (3) systems, respectively, t is time and 1/kT
is reverse temperature. Then, with the help of expression (8),
we have

U = − ∂S

∂ (1/kT )
= 3

2

V kT

λ3
f5/2 (ξ) = 3

2
PV . (A.11)

Thus the expressions for the thermodynamic function of
Fermi and Bose gases obtained with our method coincide
with those obtained in the usual way [19, 20], confirming the
correctness of the proposed approach.
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